Low-Infrastructure Hydroelectric Generator

Clay Audd, Dustin DeLaHunt, Alex Olson, Yang Peng
Advisor: Dr. Merideth Metzger
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT

Objective

To design and build a portable, self-contained, hydroelectric generator that functions without the requisite infrastructure of today’s more common hydroelectric systems. The generator will utilize a floating paddlewheel transducer to harness the kinetic energy of an existing, running water source and convert that to a usable source of electrical power.

Design

A five paddle, three section offset design was created to eliminate significant pulsations to the generator input.

Paddlewheel

Prototype

Three different paddle designs were tested in a fluid channel to better understand power loss. The greatest efficiency was achieved with the semi curved fin.

Analysis

\[\omega = \frac{R \omega}{4} \]
\[F_d = \frac{1}{2} C_d \rho (V_w - u)^2 A \]
\[T = F_d R \]
\[P = T \omega \]

RPM for Max Power
\[V_w = 5 - 2(m/s) \]
\[\frac{dP}{d\omega} = (1/2) ARC_i (V_w^2 - 4V_w R \omega + 3R^2 \omega^2) \]
\[\frac{dP}{d\omega} = 0 \]
\[V_w^2 - 4V_w R \omega + 3R^2 \omega^2 = 0 \]
\[\omega = \frac{V_w}{3R} \]
\[\omega = 42 - 112 \text{ (RPM)} \]

Fabrication

Assemble the fin mold

Analysis

After baking

Results

The power output depends on the velocity of the water exponentially. Significantly more power can be generated during spring runoff season.

Acknowledgements

Dr. Michael Czabaj
The University of Utah Composites Lab