Design Goal
- Create a 1 kg ski (170 cm length, 90 mm waist).

Motivation
- A lighter ski allows for more efficient travel in the backcountry.
- 1 kg off the foot is equivalent to 4.7-6.4 kg off the back.[1]
- Average backcountry ski weighs 1.91 kg.[2]

 [1] Study from Fjaderlatt.se
 [2] Data compiled from Evo.com

Binding Retention
- Lightweight core materials are inherently weak and alone cannot adequately hold binding screws.
- Custom fixtures for a straight pullout test were manufactured.
- The design specification was to exceed the ISO standard of 292 lb (6004:1991).

Composite Layers
- Three point bending tests were used to find the stiffness of market skis.
- Finite element analysis was used to determine the correct composite layup.
- Our final pair consists of one biaxial and two uniaxial sheets of carbon fiber between the base and core with randomly oriented fiberglass mat and biaxial fiberglass below the topsheet.

Ski Press
- MDF was CNC cut for the mold.
- Fire hose was used to make air bags to pressurize the mold.
- Heat mats were used to generate camber by creating a temperature differential.

Takeaways
- Ski manufacturing is inconsistent and difficult at low volume.
- While making 1 kg skis is possible, performance sacrifices have to be made.
- Composites as a science is still developing, therefore prototyping is essential to the ski design process.

Graphics
- Graphics were custom designed by the team and printed on the lightest available industry standard topsheet material.