Materials
• FM-4910 Polypropylene
• Aluminum, Stainless Steel
• Brushless DC Motors
• Stepper and Servo Motors

Methods
• Water Jet Cutter
• Mill, Lathe
• Sheet Metal Bender
• Vacuum Former

Performance Specifications

<table>
<thead>
<tr>
<th>METRIC</th>
<th>UNITS</th>
<th>DESIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>m/s²</td>
<td>0.45</td>
</tr>
<tr>
<td>Top speed</td>
<td>m/s</td>
<td>2.24</td>
</tr>
<tr>
<td>Tilt Range</td>
<td>degrees</td>
<td>± 90</td>
</tr>
<tr>
<td>Tilt Speed</td>
<td>degrees/s</td>
<td>45</td>
</tr>
<tr>
<td>Extension Range</td>
<td>feet</td>
<td>3-5</td>
</tr>
<tr>
<td>Extension Speed</td>
<td>inches/s</td>
<td>4</td>
</tr>
<tr>
<td>Operation Time</td>
<td>hours</td>
<td>5</td>
</tr>
</tbody>
</table>

Cleanroom Compatibility
Bearings - Polymer-based lubricant
Plastics - FM-4910 Polypropylene
Moving Parts - Particle generation < 10,000 PPCM
Structure - Metal
Surface Contact - Non-marking wheels

Team
Advisor Dr. Ian Harvey
Mechanical
• Travis Hainsworth
• Zach Lott
• Joseph Melville
• Nick Posselli
Computer Science
• Zella Urquhart
• Heath French
• Keith Anderson
• Zachary Meyers

FUTURE WORK AND ACKNOWLEDGEMENTS
This work has been funded by the Utah Science Technology And Research initiative at the University of Utah. Future work and development includes redesigning of the shell in collaboration with the College of Multi-Disciplinary Design, presentation of iShadow at the UGIM conference in June 2016, and development of a business plan centered on this product.